Molecular mechanisms of lipoic acid modulation of T-type calcium channels in pain pathway.
نویسندگان
چکیده
Alpha-lipoic acid (1,2-dithiolane-3-pentanoic acid; lipoic acid) is an endogenous compound used to treat pain disorders in humans, but its mechanisms of analgesic action are not well understood. Here, we show that lipoic acid selectively inhibited native Ca(V)3.2 T-type calcium currents (T-currents) and diminished T-channel-dependent cellular excitability in acutely isolated rat sensory neurons. Lipoic acid locally injected into peripheral receptive fields of pain-sensing sensory neurons (nociceptors) in vivo decreased sensitivity to noxious thermal and mechanical stimuli in wild-type but not Ca(V)3.2 knock-out mice. Ensuing molecular studies demonstrated that lipoic acid inhibited recombinant Ca(V)3.2 channels heterologously expressed in human embryonic kidney 293 cells by oxidating specific thiol residues on the cytoplasmic face of the channel. This study provides the first mechanistic demonstration of a nociceptive ion channel modulation that may contribute to the documented analgesic properties of lipoic acid in vivo.
منابع مشابه
CCR2 receptor ligands inhibit Cav3.2 T-type calcium channels.
Monocyte chemoattractant protein-1 (MCP-1) is a cytokine known to be involved in the recruitment of monocytes to sites of injury. MCP-1 activates the chemokine (C-C motif) receptor 2 (CCR2), a seven-transmembrane helix G protein-coupled receptor that has been implicated in inflammatory pain responses. Here we show that MCP-1 mediates activation of the CCR2 receptor and inhibits coexpressed N-ty...
متن کاملAntinociceptive Effect of Vardenafil on Carrageenan-Induced Hyperalgesia in Rat: Involvement of Nitric Oxide/Cyclic Guanosine monophosphate/ Calcium Channels Pathway
In this study, we aimed to investigate the peripheral antinociception effects of specificphosphodiesterase 5 (PDE-5) inhibitor vardenafil on carrageenan-induced nociception in rats,and the role of calcium besides the L-arginine- nitric oxide (NO)- cyclic guanosine monophophate(cGMP) pathway in these effects. Hyperalgesia was induced by the intraplantar injection of 0.1mL fresh carrageenan solut...
متن کاملAntinociceptive Effect of Vardenafil on Carrageenan-Induced Hyperalgesia in Rat: Involvement of Nitric Oxide/Cyclic Guanosine monophosphate/ Calcium Channels Pathway
In this study, we aimed to investigate the peripheral antinociception effects of specificphosphodiesterase 5 (PDE-5) inhibitor vardenafil on carrageenan-induced nociception in rats,and the role of calcium besides the L-arginine- nitric oxide (NO)- cyclic guanosine monophophate(cGMP) pathway in these effects. Hyperalgesia was induced by the intraplantar injection of 0.1mL fresh carrageenan solut...
متن کاملMechanisms of inhibition of T-type calcium current in the reticular thalamic neurons by 1-octanol: implication of the protein kinase C pathway.
Recent studies indicate that T-type calcium channels (T-channels) in the thalamus are cellular targets for general anesthetics. Here, we recorded T-currents and underlying low-threshold calcium spikes from neurons of nucleus reticularis thalami (nRT) in brain slices from young rats and investigated the mechanisms of their modulation by an anesthetic alcohol, 1-octanol. We found that 1-octanol i...
متن کاملRedox Modulation of T-Type Calcium Channels in Rat Peripheral Nociceptors
Although T-type calcium channels were first described in sensory neurons, their function in sensory processing remains unclear. In isolated rat sensory neurons, we show that redox agents modulate T currents but not other voltage- and ligand-gated channels thought to mediate pain sensitivity. Similarly, redox agents modulate currents through Ca(v)3.2 recombinant channels. When injected into peri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 30 شماره
صفحات -
تاریخ انتشار 2009